Top Advantages and Disadvantages of Open-ended Questions

Whether on a customer survey, or in interviews and public opinion polls, the kinds of questions you ask will determine the information and the kind of data you get from the respondent.

Sometimes you just need data with close-ended, Yes/No responses – to simply calculate +/- on a spreadsheet or understand percentages and statistics.

But sometimes you need data that goes deeper, that actually delves into the opinions and thoughts of the respondent. That’s where the advantages of open-ended questions come in.

What Are Open-Ended Questions?

Open-ended questions are questions that can’t simply be answered with Yes/No, True/False, multiple choice, or rated on a number or star-rating scale. Open-ended questions don’t have fixed response choices – they require the respondent to provide free-form responses, in their own voice and vernacular.

Open-ended responses are types of questions that offer much deeper, more thorough, often subjective information. Because the respondent is replying to open-ended questions in their own words, they are offering their ideas, opinions, and feelings.

Close-ended questions, on the other hand, have a limited pre-set amount of choices. Take the common Net Promoter Score (NPS) survey question, for example:

“On a scale of 0 to 10, how likely are you to recommend us to a friend or colleague?”

Or multiple choice questions like, “What is your favorite aspect of our product?”

A. Usability B. Features C. Security

Even if the eventual response isn’t known to the questioner, these examples only allow the respondent to choose from a list of possible choices that are known, so they won’t be receiving any wholly new information.

Open-ended survey questions, on the other hand, can produce information that the questioner may have never even considered before. Take these open-ended questions for example:

“Tell us how our product helps you achieve your goals” or “What features do you think our product is missing?”

These questions compel the respondent to contemplate their responses more thoroughly and drive them toward more discussion, rather than the hasty conclusion of a close-ended question.

Advantages of Open-Ended Questions

There are both pros and cons of open-ended questions. Some of the main benefits of open-ended questions are they:

  • Provide more detail
  • Allow for unlimited responses
  • Deliver new, often unexpected, insights
  • Offer seeper, qualitative data
  • Give you sentiment and opinions
  • Follow the whole customer journey

Provide more detail

Open-ended questions allow respondents to go into as much detail as they care to. Open-ended responses offer more nuance, because they are written just as the respondents speak, so they can explain themselves more fluidly. Because they aren’t tied to a rated scale or multiple choice, open-ended questions lead to less ambiguous answers.

Allow for unlimited responses

The possible responses to open-ended questions are endless, meaning there’s no limit to your data collection possibilities. Different respondents may approach the questions from vastly different angles, and conversational responses in the words of individual customers allows you to understand them more fully.

Deliver new, often unexpected, insights

One of the biggest benefits of open-ended questions is the potential for wholly new information and insights. Because there’s no limit to possible responses, you’re likely to receive information and real opinions you hadn’t previously even considered. Maybe a customer has discovered a new use case for your product or recommended a new feature that you hadn’t thought of. The insights can be huge.

Offer deeper, qualitative data

Close-ended questions offer quantitative data that’s expressed as numbers, percentages, or merely positive/negative. This data is easy to calculate, offering quick results, but it doesn’t go deeper than uncovering what has already happened.

Open-ended questions offer qualitative data that can help you find out why something has happened and inform decisions with predictive analysis. Qualitative data helps read between the lines of customer patterns to understand them as individuals, rather than numbers.

Give you sentiment and opinions

Open-ended questions allow you to understand the ideas, feelings, emotions, and opinions of your customers – because they are explaining their personal POVs. To understand the sentiment of survey responses in super fine-grained detail, you’ll need to use AI tools, like MonkeyLearn.

Try out this sentiment analyzer to automatically analyze your open-ended questions in a matter of minutes, and find out which aspects of your business perform particularly well and which you need to work on.

Follow the whole customer journey

Use your data to go beyond mere NPS and customer satisfaction CSAT surveys to more thoroughly understand the customer experience (CX) and follow the whole customer journey from the perspective of your customers. When you’re constantly collecting qualitative customer data, you’ll need to establish a robust customer feedback loop for a regular, real-time understanding of customer satisfaction.

Disadvantages of Open-Ended Questions

It’s time to weigh the advantages and disadvantages of open-ended questions. Although there are powerful advantages of open-ended questions, the disadvantages need to be considered, as well – with some tips below on how to lessen them.

  • Time-consuming to answer
  • Lower response rates
  • Difficult to compare
  • A lot of noise/irrelevant information
  • Hard to analyze

Time-consuming to answer

With open-ended questions, respondents don’t have the option to simply select or click their choice from an online or in-app survey. They have to write out their answers, sometimes explaining in detail. This takes considerably longer, but the data is worth it, if you can convince them to participate.

Lower response rates

Because they take longer to answer, you’re likely to get lower response rates than with close-ended questions. That means less data to analyze and fewer insights. Offering incentives to customers for completing surveys can sometimes increase your response rates.

Difficult to compare

Open-ended responses aren’t based on numbers or percentages, so they can’t be compared strictly mathematically. They are often objective, so they’re harder to compare with consistent data points and results.

A lot of noise/irrelevant information

Depending on how your survey is enacted, your responses may contain a lot of “noise” – things like emojis, URLs, non-word characters, etc. Furthermore, most people don’t write with perfect grammar – and spelling mistakes, misused words, etc., are common. Some respondents may even just ramble on, leaving you with information that is completely irrelevant or doesn’t make sense at all.

Hard to analyze

Open-ended questions are harder to analyze because they contain unstructured data. They can’t be easily computed as numbers, and contain subjective information, so the interpretation of the data may differ from person to person.

How to Analyze Open-Ended Questions

It used to be that you’d have to hand-annotate and manually analyze surveys with open-ended responses, wasting employee time on hours of tedious tasks, and producing results far below the desired accuracy.

However, with advances in natural language processing (NLP), machines can now do this work for us. Custom-trained (or pre-trained) text analysis tools can automatically analyze open-ended responses for topics, themes, opinions, keywords, and more – with accuracy levels above and beyond what humans could ever do.

MonkeyLearn is a SaaS text analysis platform with a suite of tools to ensure you get the most out of your open-ended survey data. They’re super easy to use and can integrate with tools you already use.

Take a look at these pre-trained text analysis tools to see what they can do with open-ended question responses:

  • Sentiment Analyzer: Automatically classify your open-ended responses as Positive, Negative, or Neutral.

Test with your own text


  • Survey Analyzer: Sort survey responses into topics or aspects: Ease of Use, Features, Pricing, and Customer Support.

Test with your own text


Ease of Use88.9%
  • Keyword Extractor: Extract keywords to understand the most important words or summarize open-ended responses (or any text).

Test with your own text


KEYWORDelon musk
KEYWORDsecond image
KEYWORDbody look
KEYWORDnew design

MonkeyLearn’s tools are ready to go, right out of the box, with little setup necessary. Better yet, you can train these tools, and more, (usually in just a few steps) to the language, needs, and criteria of your business, so you never have to worry about accuracy.

Put Machine Learning to Work on Your Open-Ended Questions

It’s clear that open-ended questions can offer deeper and more powerful insights than close-ended, Yes/No or multiple choice questions. They may be a bit harder to analyze, but with the help of machine learning tools, like MonkeyLearn, the extra work is minimal. And you’ll save time and money, and get much more powerful results in the long run.

For best results, combine open-ended and close-ended questions for qualitative and quantitative data. When you have the tools in place, you can analyze open-ended questions (or customer feedback from all over the internet) constantly and in real time.

Take a look at MonkeyLearn to learn about all of the powerful text analysis tools we have to offer or sign up to try them for free.

Rachel Wolff

January 25th, 2021